Publicación de AFM: El microscopio electrónico de barrido (SEM) del CIQTEK contribuye al estudio de la morfología del carbono duro
Las baterías de iones de sodio (SIB) están ganando popularidad como una alternativa rentable a las baterías de iones de litio, gracias al abundante contenido de sodio en la corteza terrestre (2,6 % frente al 0,0065 % del litio). A pesar de ello, las SIB aún presentan una densidad energética inferior, lo que pone de relieve la necesidad de materiales de electrodos de alta capacidad. El carbono duro es un candidato sólido para los ánodos SIB debido a su bajo potencial de almacenamiento de sodio y su alta capacidad. Sin embargo, factores como la distribución de microdominios de grafito, los poros cerrados y la concentración de defectos afectan significativamente la eficiencia coulombiana inicial (ICE) y la estabilidad. Las estrategias de modificación presentan limitaciones. El dopaje con heteroátomos puede aumentar la capacidad, pero reducir la ICE. La deposición química de vapor (CVD) tradicional ayuda a formar poros cerrados, pero presenta una lenta descomposición del metano, ciclos largos y acumulación de defectos. El equipo del profesor Yan Yu en la Universidad de Ciencia y Tecnología de China (USTC) utilizó el Microscopio electrónico de barrido (SEM) CIQTEK Para investigar la morfología de diversos materiales de carbono duro, el equipo desarrolló un método de deposición química en fase de vapor (CVD) asistida por catalizador para promover la descomposición de CH₄ y regular la microestructura del carbono duro. Los catalizadores de metales de transición, como Fe, Co y Ni, redujeron eficazmente la barrera energética para la descomposición de CH₄, mejorando así la eficiencia y acortando el tiempo de deposición. Sin embargo, el Co y el Ni tendían a causar una grafitización excesiva del carbono depositado, formando estructuras alargadas similares al grafito, tanto en dirección lateral como en dirección de espesor, lo que dificultaba el almacenamiento y el transporte de iones de sodio. Por el contrario, el Fe facilitaba una reorganización adecuada del carbono, lo que resultaba en una microestructura optimizada con menos defectos y dominios de grafito bien desarrollados. Esta optimización reducía el almacenamiento irreversible de sodio, mejoraba la eficiencia coulombiana inicial (ICE) y aumentaba la disponibilidad de sitios de almacenamiento reversibles de Na⁺. Como resultado, la muestra de carbono duro optimizada (HC-2) alcanzó una impresionante capacidad reversible de 457 mAh g⁻¹ y un alto índice de combustión (ICE) del 90,6 %. Además, la difracción de rayos X (DRX) in situ y la espectroscopia Raman in situ confirmaron un mecanismo de almacenamiento de sodio basado en la adsorción, la intercalación y el llenado de poros. El estudio se publicó en Materiales funcionales avanzados bajo el título: Ingeniería de deposición química de vapor asistida por catalizador de carbono duro con abundantes poros cerrados para baterías de iones de sodio de alto rendimiento. Como se ilustra en la Figura 1a, el carbono duro se sintetizó mediante un método de deposición ...